Data Sheet ELAX® Ex F20

Edition March 2019

Linear Motor Slide ELAX®

Highlights

Flexible positioning with an accuracy of +/- $10\mu m$, resolution $1\mu m$

Modular system with strokes of 30-150mm (1.18" - 5.90")

High cycle rates with velocity up to 3m/s thanks to linear motor

Force control, force limitation and force recording with XENAX® servo controller

Distinct less energy consumption in comparison to pneumatic slides

No need to exchange dampers, no broken sensor cables

Variable one-cable connection on the back or sidewise

General

ELAX® is the evolutionary step of the widespread pneumatic slides. The great accomplishment is the patented compact integration of the linear motor in the slider case, resulting in a force/volume ratio which has hitherto never been achieved.

A further essential key factor for future oriented automation solutions with ELAX® are the components with direct screw connections. Be inspired!

Alois Jenny Jenny Science AG

Content

1 Type Overview ELAX® Ex F20	4
2 Modular System	5
2.1 Arrangements	5
2.1.1 Y-Z Pick and Place flat	5
2.1.2 Y-Z Pick and Place upright	5
2.1.3 X-Y Cross Table	5
2.1.4 X-Y-Z Cantilever	6
3 Dimension	7
3.1 Installation	7
3.2 Front Flange, Universal Mounting Plate	8
3.2.1 Dowel Pin Ø6mm and Ø7mm	8
3.2.2 Dimensions Front Flange	8
3.3 Universal Drilling Holes in Motor Case	9
3.4 Hole Matrix Ex 30F20	10
3.5 Hole Matrix Ex 50F20	11
3.6 Hole Matrix Ex 80F20	12
3.7 Hole Matrix Ex 110F20	13
3.8 Hole Matrix Ex 150F20	14
4 Smart Praxis Oriented Details	15
4.1 One-Cable Connection Reduces Cabling	15
Requirements	15
4.2 Variable Cable Connection Offers More Flexibility	15
4.3 Weight Compensation in Vertical Oriented	15
Applications	15
4.4 Record and Limit Forces	16
4.5 Chrome Steel Cover	16
5 Performance Data	17
5.1 Motor forces, dynamics	17
5.2 Mechanical Payload Values	18
6 Accuracy	18
6.1 Positioning	18
6.2 Slide Guiding	19
7 Maintenance, Life Time	20
7.1 Lubrication	20
7.2 Life Time	20
8 Installation, Important Instructions	21
8.1 Straightness for Mounting on Ground Plate	21
8.2 Straightness for Mounting on Slider	21
8.3 Straightness Practical Test	21
9 Safety, Environment	22
9.1 Safety with XENAX® Servo Controller	22
9.2 Environmental Conditions	22

1 Type Overview ELAX® Ex F20

Type	Stroke [mm]	Weight Slider [g]	Weight Total [g]	Total with weight comp. [g]
Ex 30F20	30 (1.18")	195 (0.43 lbs)	560 (1.23 lbs)	710 (1.57 lbs)
Ex <mark>50</mark> F20	50 (1.97")	265 (0.58 lbs)	630 (1.39 lbs)	820 (1.81 lbs)
Ex <mark>80</mark> F20	80 (3.15")	340 (0.75 lbs)	780 (1.72 lbs)	1040 (2.29 lbs)
Ex 110 F20	110 (4.33")	415 (0.91 lbs)	945 (2.08 lbs)	1255 (2.77 lbs)
Ex 150 F20	150 (5.90")	490 (1.08 lbs)	1110 (2.45 lbs)	

2 Modular System

2.1 Arrangements

2.1.1 Y-Z Pick and Place flat

Multiple square grids 20 x 50mm 4 x dowel pins Ø6mm 4 x hexagon socket screws M3x30mm

2.1.2 Y-Z Pick and Place upright

Multiple linear grids 48mm 2 x dowel pins Ø7mm 2 x low head trox screws M4x8mm

For thin Pick and Place with distance of < 30mm

2.1.3 X-Y Cross Table

Multiple square grids 20 x 50mm 4 x dowel pins Ø6mm 4 x hexagon socket screws M3x30mm

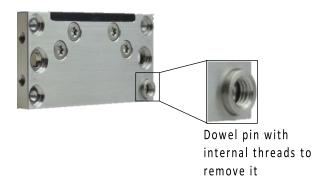
2.1.4 X-Y-Z Cantilever


Multiple square grids 20 x 50mm 8 x dowel pins Ø6mm 8 x hexagon socket screws M3x30mm

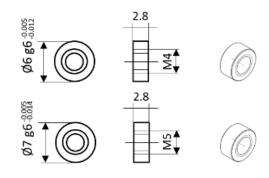
3 Dimension

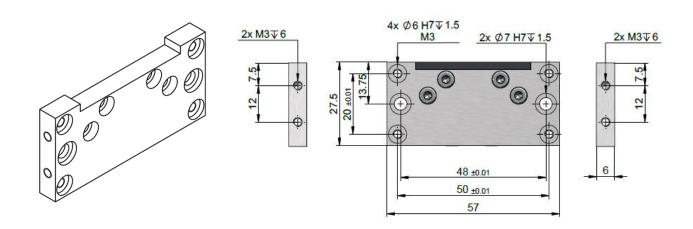
3.1 Installation

Cross Section ELAX®



Туре	L min [mm]	L max [mm]
Ex 30 F20	110 (4.33")	140 (5.51")
Ex 50 F20	130 (5.12")	180 (7.09")
Ex <mark>80</mark> F20	178 (7.01")	258 (10.16")
Ex 110 F20	208 (8.19")	318 (12.52")
Ex 150 F20	268 (10.55")	418 (16.46")

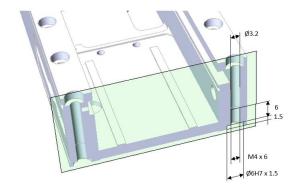

3.2 Front Flange, Universal Mounting Plate


3.2.1 Dowel Pin Ø6mm and Ø7mm

Without adapter plate, direct with dowel pins and screws. There are dowel pins with an outside of Ø6mm for flat installation with 4 x hexagon socket screws M3x30mm.

The dowel pins with an outside of Ø7mm are used for installations where slide and front flange are connected uprightly with 2 x low head torx screws M4x8mm.

3.2.2 Dimensions Front Flange

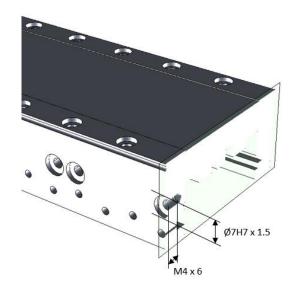


3.3 Universal Drilling Holes in Motor Case

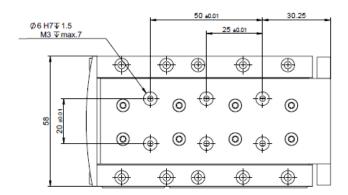
X-Y cross table or Y-Z Pick and Place flat agon socket screws M3x30mm and 4 x dowel

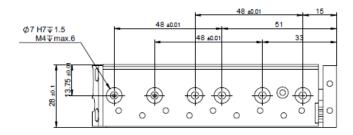
4 x hexagon socket screws M3x30mm and 4 x dowel pins Ø6mm.

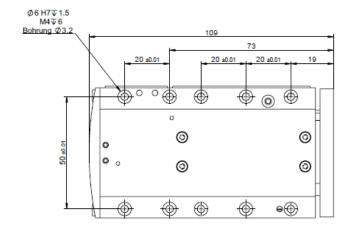
These matrix threads 20 x 50mm in the motor case allow a connection to another ELAX slide for a **X-Y cross table**. Or a connection to a front flange for a **flat Y-Z Pick and Place**. The M4 threads bellow further allow for mounting to a ground plate.



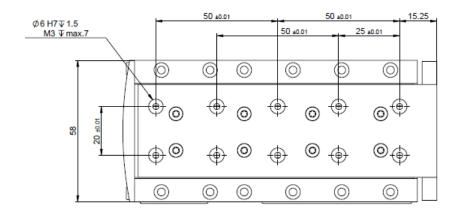
Y-Z Pick and Place upright

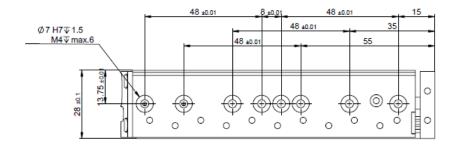

2 x torx screws with low head M4x8mm and 2 x dowel pins Ø7mm.

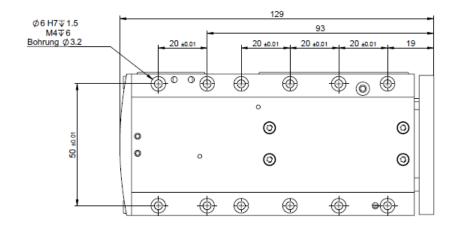

These matrix threads with a distance of 48mm allow a connection to a front flange for a Y-Z Pick and Place upright.


This is how multiple Y-Z Pick and Place units can be placed next to each other very closely (<30mm distance).

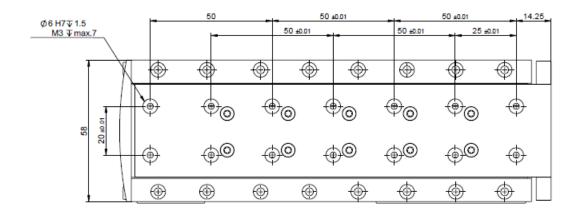
3.4 Hole Matrix Ex 30F20

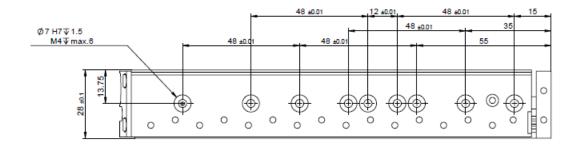


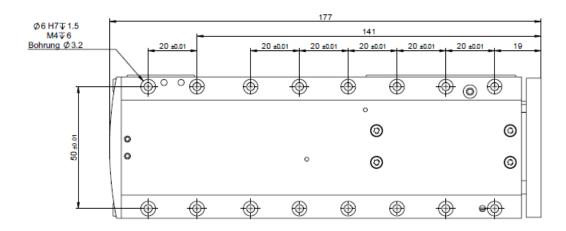




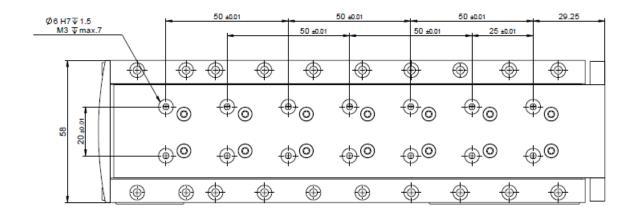
3.5 Hole Matrix Ex 50F20

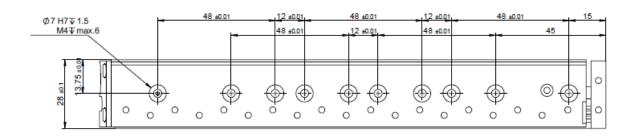


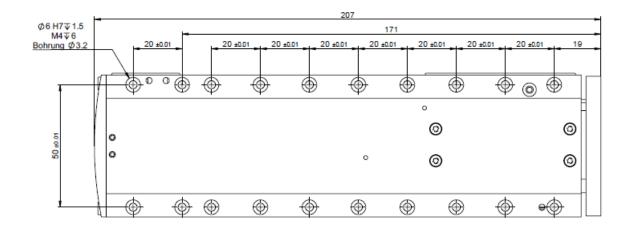




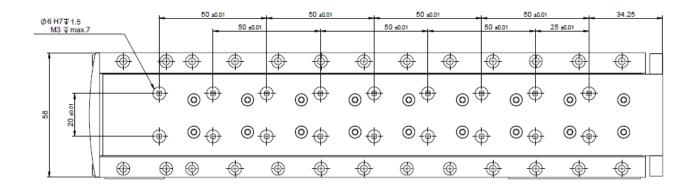
3.6 Hole Matrix Ex 80F20

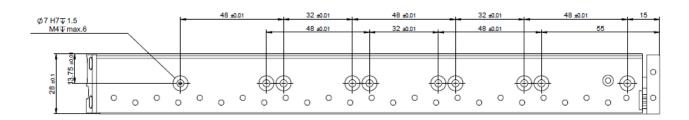


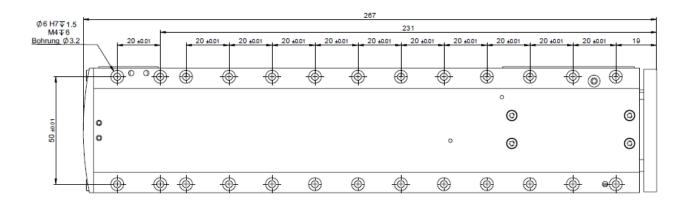




3.7 Hole Matrix Ex 110F20







3.8 Hole Matrix Ex 150F20

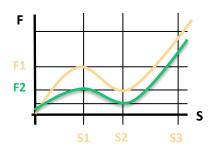
4 Smart Praxis Oriented Details

4.1 One-Cable Connection Reduces Cabling Requirements

The one-cable connection from Jenny Science simplifies the whole machine cabling complexity. In addition, the cable chains are more compact and lighter, need less room and achieve higher dynamics.

4.2 Variable Cable Connection Offers More Flexibility

The cable connection can be oriented sidewise in order to keep the space behind the ELAX free for more compact machine installations.


4.3 Weight Compensation in Vertical Oriented Applications

This new constructed weight compensation unloads the linear motor in the ELAX slide. The linear motor has far less and this saving of energy can be used for high dynamics. In case of power interruption, the slide remains in position or drives upwards depending on the settings – without air pressure or electricity.

4.4 Record and Limit Forces

The patented function "Force Calibration" is able to compensate the magnetic cogging forces, the payload and the friction forces of the ELAX® direct drives in a very simple way. This is how it becomes possible to control, to limit and to monitor forces in process. Together with the XENAX® servo controller it is also possible to record complete force/way diagrams. No need for an additional force sensor.

4.5 Chrome Steel Cover

For food- and pharm industry or for clean room of laboratory automation or medical technique.

With this chrome steel cover the modular matrix holes and threads are covered and the surface is smooth and easy to clean.

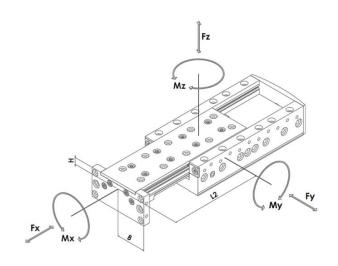
5 Performance Data

5.1 Motor forces, dynamics

Metric System:

ELAX®	Ex 30F20	Ex 50F20	Ex 80F20	Ex 110F20	Ex 150F20
Fn	20N	20N	20N	20N	20N
Fpeak	60N	60N	60N	60N	60N
Acceleration a-max.	80m/s ²	75m/s²	70m/s²	65m/s²	60m/s ²
Velocity v-max.	1.5m/s	1.9m/s	2.3m/s	2.6m/s	2.9m/s
Stroke	30mm	50mm	80mm	110mm	150mm
Min. time for max. stroke with 500g payload	40ms	55ms	70ms	85ms	100ms
Forced centering cross roll cage for highest dynamic	standard	standard	standard	standard	standard
British System:					
Fn	4.5lbf	4.5lbf	4.5lbf	4.5lbf	4.5lbf
Fpeak	13.5lbf	13.5lbf	13.5lbf	13.5lbf	13.5lbf
Acceleration a-max.	262ft/s²	246ft/s²	230ft/s²	213ft/s²	197ft/s²
Velocity v-max.	4.9ft/s	6.2ft/s	7.5ft/s	8.5ft/s	9.5ft/s
Stroke	1.18in	1.97in	3.15in	4.33in	5.9in
Min. cycle time for max.					
stroke	40ms	55ms	70ms	85ms	100ms
with payload of 1.1 lbs					
Forced centering cross roll cage for highest dynamic	standard	standard	standard	standard	standard

Fn = Nominal force 100% Duty cycle Fp = Peak force 10% Duty cycle, Performance limitation through temperature observation



5.2 Mechanical Payload Values

Туре	Mx max [Nm]	Fy max [N] Fz max [N]	My max [Nm] Mz max [Nm]
Ex 30	20/14.8lbf ft	1050/236lbf	17/12.5lbf ft
Ex 50	20/14.8lbf ft	1050/236lbf	17/12.5lbf ft
Ex 80	30/22.1lbf ft	1575/354lbf	33/24.3lbf ft
Ex 110	30/22.1lbf ft	1575/354lbf	33/24.3lbf ft
Ex 150	40/29.5lbf ft	2100/472lbf	56/41.3lbf ft

If there are multiple forces and moments on the linear motor, besides considering the maximum loads the following equation must comply:

$$\frac{|\mathrm{Fy}|}{\mathrm{Fy}\; max} + \frac{|\mathrm{Fz}|}{\mathrm{Fz}\; \mathrm{max}} + \frac{|\mathrm{Mx}|}{\mathrm{Mx}\; \mathrm{max}} + \frac{|\mathrm{My}|}{\mathrm{My}\; \mathrm{max}} + \frac{|\mathrm{Mz}|}{\mathrm{Mz}\; \mathrm{max}} \\ \leq 1$$

6 Accuracy

6.1 Positioning

Standard resolution magnetic $1\mu m$ / Increments (0.03937 μ in / increments) measuring scale

Accuracy $< +/-10\mu m (< +/- 0.3937 \mu in)$

Linear expansion magnetic 11μm/m/°C

measuring scale

Reference To mechanical limitation internal, selectable

either driving in or out

Zero Point absolute 1mm (0.03937in) distance of mechanical limitation when slide is in the case. Fully

automatic calculation of absolute positioning

after reference drive.

Running Accuracy [μm] 3.00 2.00 3.00 2.00 4.00 3.00 4.00 5.00 9 17 26 34 43 51 60 68 77 8 Lánge (mm) EYX (Geradheit 1/SO) 3.30 μm — EZX (Geradheit 2/SO) 3.19 μm

Angular Error [arc seconds, as] 150 00 150 00 150 00 150 00 150 00 150 00 150 00 150 00 150 00 150 00 150 00 150 00 175 00 175 00 180 00 175 00 180 00

6.2 Slide Guiding

ELAX® electrical slides with linear motor are delivered with the following tolerances as a standard. This data is based on unstressed condition.

ELAX®	Ex 30F20	Ex 50F20	Ex 80F20	Ex 110F20	Ex 150F20
Metric System:					
Running accuracy horizontal EYX / vertical EZX	±5μm	±8μm	±10μm	±12μm	±15μm
Tolerance construction height	±0,1mm	±0,1mm	±0,1mm	±0,1mm	±0,1mm
British/Engl. System:					
Running accuracy horizontal EYX / vertical EZX	±0.20μin	±0.31μin	±0.39μin	±0.47μin	±0.59μin
Tolerance construction height	±0.04in	±0.04in	±0.04in	±0.04in	±0.04in
Angular error QX (roll)	±50as	±50as	±60as	±60as	±70as
Angular error QY (pitch)	±150as	±150as	±170as	±170as	±200as
Angular error QZ (yaw)	±120as	±130as	±150as	±150as	±170as

7 Maintenance, Life Time

7.1 Lubrication

The initial lubrication through Jenny Science prior to delivery should be sufficient for multiple years, depending on the operational demands of the linear motor.

The ELAX® cross roll cages are force centered through gear pinions and gear rods. The lubrication intervals depend on multiple parameters, such as operational demands, dynamics, operational temperature, pollution etc. Preventively we suggest to lubricate the bearing rails every 12 months. For this we recommend the dosage pistol incl. Lubricating cartridge.

155.00.10 VA Dosage pistole for lubrication 155.00.15 VA Cartridge with spez. lubricant

7.2 Life Time

The ELAX® direct drive with linear motor operates without contact, without wear and tear and without loss in accuracy. In principle the mechanical guides are the determining elements. The ELAX® cross roll

maintenance. They are also less pollution sensitive than closed circulating ball bearing systems. With medium operational stress, good maintenance and no external pollution our experience shows that a life time of 20 000km (12 400 miles) can be

achieved.

guides have a beneficial "linear force support", in contrast to the "point force support" in ball bearing guides. The cross roll guides are precise, robust and low on

Actions with which life time can be extended:

Example Calculation, middle Payload (1.5kg)

ELAX® Ex 80F20

1575N (12x164Nx80%) Actual load capacity in the middle Fz Ceff **Magnet Power** 180N Initial tension RON

Mid load capacity 15N Equivalent load P 275N

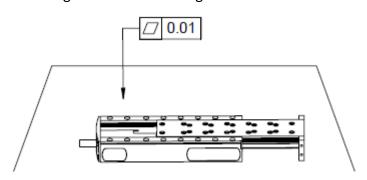
Experience probability factor a 0.62 (95%)

L = a * $(C_{eff}/P)^{33} * 10^5 \text{ m} = 19'662'00 \text{ m} \rightarrow$ 20'000 running-km

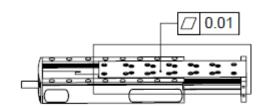
Endurance test in torture centre >50 Mio Cycles

No maintenance, just initial lubrication, ELAX® Ex 30F20 vertical, payload 460g, stroke 30mm, speed 17Hz, no weight compensation,

motor temp. 65°


- Trajectories with curve profiles instead of trapezoidal profiles (XENAX® Servo controller, default value S-curve profile = 20%).
- Dynamics not higher than needed.
- Completing non cycle time critical motions slower.
- Avoid pollution in the guides.
- Cleaning and lubrication of the guiding beams every 12 months.

8 Installation, Important Instructions


8.1 Straightness for Mounting on Ground Plate

If the ELAX® electric slides are mounted on a ground plate, it has to have a straightness of 0.01mm. If the straightness is out of this tolerance, the ELAX® can be distorted when screwed to the ground plate which might cause the guidings to seize. This increases the wear and tear, reduces the lifespan and might even destroy the guiding system.

8.2 Straightness for Mounting on Slider

These same conditions hold true for components that are mounted on the slider of the ELAX®. The contact surface has to have a straightness of 0.01mm.

8.3 Straightness Practical Test

Before mounting the ground plate or the slider, please test how smooth the slider can be moved by hand. After tightening the screws, move the slider again by hand. There should not be any noticeable changes in smoothness, otherwise the contact surfaces have to be revised.

9 Safety, Environment

9.1 Safety with XENAX® Servo Controller

EN 61000-6-2:2005

EMC Immunity Testing, Industrial Class A

Electromagnetic compatibility (EMC), Immunity for industrial environments

EN 61326-3-1 Immunity for Functional Safety

IFA:2012 Functional safety of power drive systems

EN 61326-1, EN 61800-3, EN 50370-1 Electrostatic discharges ESD, Electromagnetic Fields, Fast electric transients Bursts, radio frequency common

mode

EN 61000-6-3:2001

EMC Emissions Testing, Residential Class B

Electromagnetic compatibility (EMC), Emission standard for residential, commercial and light-industrial environments

EN 61326-1, EN61800-3, EN50370-1

IFA:2012

Radiated EM Field, Interference voltage Functional safety of power drive systems

9.2 Environmental Conditions

Storage and transport No outdoor storage. Storage rooms have to be well vented

and dry. Storage temperature -25°C up to +55°C

(-13°F up to 131°F).

Operational temperature 5°C - 50°C (41°F - 122°F) Environment, reduction in

performance at 40°C (104°F).

Operational humidity 10-90% non-condensing.

Cooling No need of external cooling. If linear motor case is

mounted on a heat conductive base, higher performance

can be achieved.

Protection category IP 40

Note

This data sheet contains copyright protected information. All rights are reserved. This document may not be in its entirety or partially copied, duplicated or translated without the prior consent of Jenny Science AG. Jenny Science AG grants no guarantee on, or will be held responsible for, any incidents resulting from false information.

Information in this instruction manual is subject to modifications.

Jenny Science AG Sandblatte 7a CH-6026 Rain, Schweiz

Tel +41 (0) 41 455 44 55 Fax +41 (0) 41 455 44 50

www.jennyscience.ch alois.jenny@jennyscience.ch

© Copyright Jenny Science AG 2019

ELAX_Ex_F20_Daten_E.docx / 27. 02. 2019 / js